

Littoral Combat and Power Projection Future Naval Capability (FNC) Expeditionary Logistics (ExLog) Thrust

Presented at the 7th Annual NDIA Expeditionary Warfare Conference

Agenda

- Sea Basing Refresher
- ONR's Role in Naval Logistics
- ONR's Approach to Enabling Sea Basing
- Technology Transition
- Point of Contact

Advantages of Sea Basing

- Operate without host nation support
- Use the sea as maneuver space to enable implementation of STOM and EMW
- Increase the security of materials and personnel by keeping them mobile and over the horizon

Challenges to Sea Basing

- Logistics system reliability
 - Open ocean environment
 - Waves are larger as you get away from land
 - Current assets are not capable of efficient operation
 - Over the horizon operations
 - Sortie times are increased
 - Aircraft and lighter range capabilities are stretched
- Throughput capacity
 - Material movement to shore
 - Operational and logistics will compete for helicopters, MV-22s, and LCACs/lighters
 - Movement of materials from the Sea Base to lighters takes longer
 - Selective Offload
 - The time to get a specific item from the hold of the Sea Base to the debarkation point needs to be greatly improved
 - Workload required to perform selective offload must be dramatically reduced

ONR's Role in Naval Logistics

- Identify and mature new technology that can be integrated into (or replace) current logistics systems or equipment
- Cannot develop "prototypes", but must develop systems necessary to demonstrate the technology contextually
- ONR cannot perform engineering design development of the production system
- The investment focus is on the technology, not the system – if the demo system is too expensive, the value of the investment is diluted

System of Systems

M&S for Distribution EC

- Logistics material flow will be modeled from pierside at CONUS to vertical takeoff from Sea Base or roll off onto shore from a lighter
 - Quantify relative benefits of technologies
 - Provide a visualization of the material flow
 - Funding Navy Labs to gather and collect data to develop / validate the model
 - Data collection conducted on LHD 5 and T-AE 34 during weapons offload at NWS Earle
 - Data provided for other L-ships, T-AKE, and aircraft carriers

Enabling Sea Basing

Sea Basing

Closure	Interoperability	Sustainment	Rede ployme nt
High Speed Shuttle	High Speed Shuttle	High Speed Shuttle	High Speed Shuttle
	Heavy UNREP	Heavy UNREP	Heavy UNREP
	Strike Up/Down	Strike Up/Down	Strike Up/Down
Ship to Shore Surface Craft	Ship to Shore Surface Craft	Ship to Shore Surface Craft	Ship to Shore Surface Craft
	Skin to Skin Material Transfer	Skin to Skin Material Transfer	Skin to Skin Material Transfer
Ground C2	Ground C2	Ground C2	Ground C2
Logistics M&S	Logistics M&S	Logistics M&S	Logistics M&S
Consumption Reduction	Consumption Reduction	Consumption Reduction	Consumption Reduction

Heavy UNREP

OBJECTIVE:

- Increase transfer rate (speed and/or payload) during connected replenishment to decrease UNREP time 50%
- Technology approach that can expand to sea state 5
- Extend ship separation distance
- Support manning objectives of future naval platforms

PAYOFF:

- Increase the throughput capacity of the system
- Reduce the time alongside (time away from primary mission)

TECHNICAL APPROACH:

- Multiple awards in multiple technology interest areas
- Tensioned ropeway / advanced materials
- Total load control / relative motion compensation / transfer motion control
- Unrep station-keeping / ship positioning

PERFORMERS:

NSWC Port Hueneme, TBD

SCHEDULE:

	FY02	FY03	FY04	FY05	FY06	FY07	FY08
Demo Model Development							
Technology Investigation)					
Demo Model Procurement							
Demo Model ILS							
Test Site Development							
Land Based Tests							
Ship Installation Drawings							
Ship Installation							
In-Port Tests							
At-Sea Demonstrations							

TRANSITION TARGET:

PEO EXW, backfit to T-AKE

High Speed Shuttle

TECHNICAL APPROACH:

- FY02 joint venture experimentation
- Develop a technology roadmap to enable HSS (await MNS / ORD)
- Develop required technology starting in FY05

FY02 EXPERIMENTATION PERFORMERS:

ONR, NSWCCD, CSC, Navy Reserve

PERFORMERS:

TBD for technical development

OBJECTIVE:

- High speed sustainment of the seabase from the ISB
- Robust structures for reliable open ocean high speed operations
- Cargo transfer capability (RO/RO & LO/LO) in the open ocean environment
- Maximize crew and passenger performance

PAYOFF:

- Tailored, frequent sustainment (and retrograde disposal) to the seabase
- Reduced logistics footprint ashore
- Utility of intra-theater high speed vessels for reconstitution to the sea base

SCHEDULE:

<u> </u>							
TASKS	FY01	FY02	FY03	FY04	FY05	FY06	FY07
INSTRUMENT HSV	$\triangle \forall$						
DATA ANALYSIS							
MUA	Z		Δ				
REQ DEV		Δ-					
Tech Dev				Z			

TRANSITION TARGETS:

PEO EXW

Skin to Skin

Material Transfer

OBJECTIVE:

- Allow alongside, skin to skin material transfer in the open ocean environment
- Connect varied size ships and surface platforms with the need for only one of them to have Navy specific gear
- Ship to ship transfer of larger, heavier loads than possible using traditional CONREP approach
- Transfer the same amount of cargo in half the time as existing UNREP systems

PAYOFF:

 Acts as a force multiplier by enabling non-self-unloading containerships to provided sustainment rather than buying additional CLF ships for the job

TECHNICAL APPROACH:

 Multiple low-level study awards in FY02, followed by competitively awarded FY03 development in feasible technology areas

Potential Products:

- Motion Compensating Cranes
- •Inflatable Fendering, new fender materials
- •Ship To Ship Securing
- •Communications and stationkeeping aids

FY02 STUDY PERFORMERS: JJMA, NSWCCD

SCHEDULE:

SCHEDULE.						
TASKS	FY02	FY03	FY04	FY05	FY06	
BAA & Source Select						
Tech Feasibility Study		7				
BAA & Tech Dev	_			\triangle		
Tech Maturation				\triangle —		
1 cen maturation						<u> </u>
Demo & Transition	 ղ				\triangle	

TRANSITION TARGETS:

- •MPF(F) / Sea Base Demonstration Ship
- •Naval Operational Logistics IPT

Strike Up / Strike Down

Human Amplification Technology

Selective Offload Automation

Blast-Proof Packaging

TECHNICAL APPROACH:

- Awards in multiple technology interest areas made Spring 02.
- Initial Downselect early FY03.

TECHNOLOGY INTEREST AREAS:

- · Load Movement and Handling
- Cargo Stowage
- Selected Offload

OBJECTIVE:

- Cargo strike up&down in sea state 5
- Cargo rates of 414 pallets/hr
- Workload reduction up to 75%
- Material available for issue within 4 hours
- Reductions in weight and power consumption

PAYOFF:

- Potential Reduced Manning
- Increased Aircraft Sortie Rate
- Reduced Combat Ship Time Off-Station

SCHEDULE:

TASKS	FY01	FY02	FY03	FY04	FY05	FY06
BAA / Selection		<u> </u>	1100			
Tech Development		\triangle	\triangle			
IPR/ Downselect			Δ			
TRL Tech Matured			Δ	$\overline{\triangle}$		
Demo / Test				\triangle		$\overline{\Delta}$

TRANSITION TARGETS:

- PEO EXW (LHA(R)/MPF(F)
- DDX
- PEO CARRIERS

Sea Base to Shore Surface Craft

OBJECTIVE:

- •Develop technologies that enable current and planned lighterage systems to provide the best possible throughput and operational flexibility to support the sea basing concept
- •Areas of focus include cargo transfer, cargo transport, system reliability/maintainability, and lighterage assembly

PAYOFF:

- •Enable enhanced sea-borne positioning of assets, force reconstitution, and STOM through longer ranges, larger payloads, increased throughput rates, and increased safe operating envelopes
- •Improve reliability to act as a force multiplier

APPROACH:

 Through a series of competitive contract awards, develop and transition technologies that improve the ability of current and planned lighterage vessels to support the sea base and the EMW doctrine

PRODUCTS:

- Propulsion Technology
- Advanced Hull Form Technology
- Cargo Transfer Technology
- Cargo Stabilization Technology
- Connector Technology

SCHEDULE:

TRANSITION TARGETS:

•Heavy LCAC & LCAC SLEP •NavOpLog IPT •MPF(F) •INLS

Consumption Reduction

- Investment begins in FY05
- Focus is on reducing the logistics throughput required by using resources more efficiently and reducing system weights
 - New lightweight construction materials
 - Ammo reduction
 - Power generation systems and alternative energy sources

Comprehensive Logistics C2
System

Situational
Awareness &
Collaboration

Conduct COA Analysis

Enable The Logistician

M&S Design to Support USMC Planning Process

Higher Commander's Warning Order, OPLAN or OPORD

Identify support mission, Supporting and supported units.

Mission

Analysis

Develop estimate of supportability

Issue CSSE OPORD

Provide inputs for Commander's OPLAN or OPORD

6 Transition

Orders

Development

Course of Action
(COA) Development

M&S

combines
mission inputs &
planning factors to
forecast logistics
requirements

Refine CSSE concept for support, prepare log annexes

Provide detailed nextday schedule, generates appropriate log annexes Marine Corps
Planning Process

3 COA Wargame

COA Comparison & Decision

Evaluate COA and validate estimate

Logistics Support of MCPP

M&S used to provide quantitative measures of success for range of possible outcomes

Select COA that provides best support

M&S tests feasibility, prepares resupply schedule. M&S used to assess combined ops/log success

Naval Command & Control

OBJECTIVE:

- Integrated logistics for the JTF/ATF/MAGTF
- Increased logistics (friendly) situational awareness
- Increased asset visibility
- Near real-time readiness monitoring of critically tracked items (CTI)
- Advanced decision support tools to increase afloat logistics efficiency and effectiveness

PAYOFF:

- Fully implement the Naval warfighting concepts
- · Potential to reduce infrastructure ashore
- Potential to reconfigure afloat footprint
- Increased responsiveness

APPROACH:

- Employ maturing software capabilities to the logistics area, using incremental risk based prototyping
- Invest in operational logistics & decision support tools such as a Sustainment Calculator, Task Org Builder, COA Simulator, Risk Analysis, Event Matrices, Virtual Sand Table, Forecasting Models
- Approximately \$14M investment over 4 years

TECHNOLOGY INTEREST AREAS:

- Advanced scheduling/synchronization
- Non-linear solution / chaos theory

SCHEDULE:

TASKS	FY04	FY05	FY06	FY07
Program Planning and BAA	Δ			
INITIAL TECHNOLOGY DEVELOPMENT	1			
DOWNSELECT		\triangle		
TECHNOLOGY MATURATION		<u>\(\) \(\) \(\)</u>		7
TECHNOLOGY INTEGRATION AND TRANSITION		△.		$\overline{}$

TRANSITION TARGET: TBD

Technology Transition

- Prior to S&T investment
 - Conduct discussions with requirements, resource, acquisition, and fleet/force regarding capability gaps and operational issues
 - Establish commitments from all parties to take the technology / product from development to the fleet
 - Develop investment plan and execute S&T investment keeping everyone aware of the status and confirming direction is still correct
- The ExLog IPT has representation from all these communities and is responsible to ensure the investments are done in a reasonable manner

Business Opportunities

Expected BAA Topic Area Release

April 2003

May 2003

May 2003

• June 2003

• June 2003

• June 2003

June 2003

• Feb 2004

• Feb 2004

• Feb 2004

Fendering System Technology

Tensioned Ropeway System Technology

Total Load Control System Technology

Ship Stationkeeping S/A Technology

Propulsion Fan and Shroud Technology

Lift Fan and Bow Thruster Technology

6-DOF Load Control Crane Technology

Shipboard Asset Visibility Technology

Mission Planning Support Technology

Feedback Decision Support Technology

ExLog POCs

Ms. Lynn Torres
Office of Naval Research, Code 36
ExLog FNC Program Manager
torresl@onr.navy.mil